Eugenol Inhibits the GABAA Current in Trigeminal Ganglion Neurons

نویسندگان

  • Sang Hoon Lee
  • Jee Youn Moon
  • Sung Jun Jung
  • Jin Gu Kang
  • Seung Pyo Choi
  • Jun Ho Jang
چکیده

Eugenol has sedative, antioxidant, anti-inflammatory, and analgesic effects, but also serves as an irritant through the regulation of a different set of ion channels. Activation of gamma aminobutyric acid (GABA) receptors on sensory neurons leads to the stabilization of neuronal excitability but contributes to formalin-induced inflammatory pain. In this study, we examined the effect of eugenol on the GABA-induced current in rat trigeminal ganglia (TG) neurons and in human embryonic kidney (HEK) 293 cells expressing the GABAA receptor α1β2γ2 subtype using the whole-cell patch clamp technique. RT-PCR and Western blot analysis were used to confirm the expression of GABAA receptor γ2 subunit mRNA and protein in the TG and hippocampus. Eugenol decreased the amplitude ratio of the GABA-induced current to 27.5 ± 3.2% (p < 0.05) in TG neurons, which recovered after a 3-min washout. In HEK 293 cells expressing the α1β2γ2 subtype, eugenol inhibited GABA-induced currents in a dose-dependent manner. Application of eugenol also decreased the GABA response in the presence of a G-protein blocker. Eugenol pretreatment with different concentrations of GABA resulted in similar inhibition of the GABA-induced current in a non-competitive manner. In conclusion, eugenol inhibits the GABA-induced current in TG neurons and HEK 293 cells expressing the GABAA receptor in a reversible, dose-dependent, and non-competitive manner, but not via the G-protein pathway. We suggest that the GABAA receptor could be a molecular target for eugenol in the modulation of nociceptive information.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eugenol inhibits K+ currents in trigeminal ganglion neurons.

UNLABELLED Eugenol, a natural capsaicin congener, is widely used in dentistry. Eugenol inhibits voltage-activated Na(+) and Ca(2+) channels in a transient receptor potential vanilloid 1 (TRPV1)-independent manner. We hypothesized that eugenol also inhibits voltage-gated K(+) currents, and investigated this in rat trigeminal ganglion neurons and in a heterologous system using whole-cell patch cl...

متن کامل

Eugenol Inhibits ATP-induced P2X Currents in Trigeminal Ganglion Neurons.

Eugenol is widely used in dentistry to relieve pain. We have recently demonstrated voltage-gated Na(+) and Ca(2+) channels as molecular targets for its analgesic effects, and hypothesized that eugenol acts on P2X(3), another pain receptor expressed in trigeminal ganglion (TG), and tested the effects of eugenol by whole-cell patch clamp and Ca(2+) imaging techniques. In the present study, we inv...

متن کامل

Eugenol and carvacrol excite first- and second-order trigeminal neurons and enhance their heat-evoked responses.

Eugenol and carvacrol from clove and oregano, respectively, are agonists of the warmth-sensitive transient receptor potential channel TRPV3 and the irritant-sensitive transient receptor potential ankyrin (TRPA)-1. Eugenol and carvacrol induce oral irritation that rapidly desensitizes, accompanied by brief enhancement of innocuous warmth and heat pain in humans. We presently investigated if euge...

متن کامل

Effects of Eugenol on T-type Ca Channel Isoforms

Eugenol has been used as an analgesic in dentistry. Previous studies have demonstrated that voltage-gated Na channels and high-voltage-activated Ca channels expressed in trigeminal ganglion (TG) neurons sensing dental pain are molecular targets of eugenol for its analgesic effects. However, it has not been investigated whether eugenol can affect T-type Ca channels, which are known to be detecte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015